News
Sparse matrix computations are pivotal to advancing high-performance scientific applications, particularly as modern numerical simulations and data analyses demand efficient management of large, ...
This article proposes a constrained ℓ₁ minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid p-variate random variables. The resulting estimator is shown to ...
This paper considers estimation of sparse covariance matrices and establishes the optimal rate of convergence under a range of matrix operator norm and Bregman divergence losses. A major focus is on ...
Sparse matrix computations are prevalent in many scientific and technical applications. In many simulation applications, the solving of the sparse matrix-vector multiplication (SpMV) is critical for ...
A novel AI-acceleration paper presents a method to optimize sparse matrix multiplication for machine learning models, particularly focusing on structured sparsity. Structured sparsity involves a ...
The classic sparse matrix screen based on Jancaric and Kim (1991) and modified by Cudney et al (1994). Samples salts, polymers, organics and pH (see conditions). Helsinki Random II A combined sparse ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results